A Low-cost, Scalable Control Solution for Grid-Interactive Small and Medium Sized Commercial Buildings (SMCBs)

SMCBs are Huge Demand Resources

- Consistent HVAC configuration (Multiple RTUs)
- ~50% of total commercial indoor floor space
- ~50% of energy usage in the commercial building sector
- Gap: very few commercial control solutions
 for grid flexibility (optimal load shifting and

First Demonstration Site

MPC deployed for two bldgs. in an elementary school, CA. 6 RTUs were controlled to reduced peak demand & cost. (Secured by partner company*) *Community Energy Labs. (CEL)

MPC: Only Requires Thermostats!

Hierarchical MPC (UMPC→LMPC)

shedding)

 Scalability potential: once an advanced control solution is developed for SMCBs, it could be highly scalable due to the consistent HVAC system

We propose a Low-cost, Scalable Solution

- By a customized MPC for SMCB that only uses web-enabled thermostats (no additional sensors and networking) and (2) automated modeling/implementation approach
- The scalability of the proposed MPC was proven through multiple site deployments

Background Works/Industry Involvement

 MPC-v1 demonstrated at multiple sites through multiple industrial supports (Duke Energy, Johnson Control, Southern California Edison, FDSI, Carrier, Emerson; 2015~2016)

Customer Engagement

CEL continues its work with Bonneville Environmental Foundation and other educators to find ways to integrate what they are learning into curriculum.

CEL worked with SCE to roll out a semi-annual training for building operators (54 participants in the April 2022 session). CEL is taking what we are learning and launching a formal Customer Success team for the K12 ecosystem.

Override is designed to Occupied ⇔ Unoccupied mode Simply, increase/decrease arrows to feel cold/hot.

Flyer

LBNL, CEL, and School manager distributed educational Flyers/Video to share how to "properly" use thermostats

LMPC

- Scalable MPC only requires a thermostat.
- UMPC: Optimal load shifting (24-hr prediction)
- LMPC: Peak demand coordination (15-min prediction)

MPC customization

UMPC

Customer's Override behavior

- Make MPC decision based on overridden action. Integer resolution
- Rounding data in Kalman Filter to reduce feedback error.

MPC as a service in CEL's cloud service

- MPC-v1 was commercialized (FDSI/m-cloud; 2016)
- MPC-v2, for optimal load shifting and tested in a laboratory (2017~2018)

Project Highlights

- First MPC demonstration in K-12 school buildings for peak demand reduction and load shifting
- Experimentally demonstrated the MPC for multiple RTUs without hardware retrofit

alifornia MPC's Peak Demand Reduction

Push **override**

to change

"Unoccupied

Peak demand reduction

First demo: 24% of Peak Demand Reduction and 16% of Load Shifting Potential

Team

LBNL develops and enhances modeling and control algorithms

Load shifting potential

Contact Info

Donghun Kim

Building Technologies DepartmentResearch ScientistEmail: donghunkim@lbl.govWebsite: https://eta.lbl.gov/people/donghun-kim

 \rightarrow Peak demand reduction of 24% (total) and 30% (HVAC)

 \rightarrow M2 is worst case: 4 out of 6 RTUs were overridden by users.

Future work

- Scale up to all school buildings (17 RTUs in 7 bldgs.).
- More automated process and complete tech transfer.

